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Near wall dynamics of a spherical particle in
crowded suspensions of colloidal rods – dynamic
information from TIRM revisited

Silvia De Sio, Christoph July, Jan K. G. Dhont and Peter R. Lang *

We performed total internal reflection microscopy (TIRM) experiments to determine the depletion potentials

between probe spheres and a flat glass wall which are induced by long and thin, rod-shaped colloids (fd-virus),

and probe the spatially resolved dynamics of the probe spheres. The dynamic information from the

same raw TIRM intensity time traces is extracted in three different ways: by determining the spatially

averaged diffusion constant of the probe sphere normal to the wall, by measuring the position

dependence of the diffusion coefficient, and by measuring the particle’s local drift velocity. Up to a

concentration of about 6 times the overlap concentration of the rod-like colloids, the spatially averaged

diffusion coefficient and the amplitude of the depletion potential are in surprisingly good agreement

with theoretical predictions in which mutual interactions between the rods are neglected, that is, where

the concentration is less than the overlap concentration. On increasing the depletant content even

further, however, both the static and the averaged dynamic quantities begin to deviate from such theoretical

predictions. In particular we find large deviations from the prediction by Mao, Cates, and Lekkerkerker

[J. Chem. Phys., 1997, 106, 3721] based on the third order virial expansion for the rod concentration. It is

shown that there are significant inaccuracies in TIRM measurements of diffusion coefficients due to the

limited time range in which the mean squared displacements vary linearly in time, whereas mean

displacements give much more accurate information concerning the probe sphere dynamics.

1 Introduction

Whenever a particle suspension consists of more than one

colloidal component, the static properties of the suspension

cannot be described anymore on the basis of DLVO-type pair

interaction potentials alone. Rather an additional entropic

contribution has to be considered, which is usually referred

to as the depletion interaction in the community of soft matter

scientists and which is the driving force of many effects which

are summarized under the term crowding1 in the field of

biophysics. In their ground-breaking work, Asakura and Oosawa

provided the classical theoretical description for depletion poten-

tials between colloidal bodies induced by second components of

various shapes,2,3 where they applied two fundamental assump-

tions. Firstly they treat the second component as an ideal gas, i.e.

the depletant is described as phantom bodies, which do not have

any mutual interaction. Secondly they calculate the forces between

two flat surfaces from which the interaction energy between curved

surfaces is derived by using Derjaguin’s approximation, which

requires that the curvature radius is large as compared to the

separation distance and the depletant size. Despite a plethora of

experimental and theoretical publications on the depletion inter-

action (for an overview the interested reader is referred to the book

by Tuinier ad Lekkerkerker4 and the references cited therein), there

have been only relatively few studies in which these basic assump-

tions were challenged or violated.5–16

Total internal reflection microscopy (TIRM)17 has proven to

be an ideal method for the measurement of depletion inter-

actions between a probe sphere and a flat glass wall.6,7,18–24

In our previous contribution16 we used TIRM to show that

depletion potentials induced by the rod-like fd-virus follow the

classical Asakura–Oosawa (AO) predictions at depletant con-

centrations and size ratios at which this theory is expected to

fail. Further, at high concentrations, we observed deviations

from the ideal gas behavior, which are much more pronounced

than theoretically predicted by Mao et al.8 In the present study

we discuss experiments on the statics, providing additional

experimental data, as well as the dynamics of probe spheres of

various sizes relative to the depletant size, and extend earlier

approaches to resolve the dynamics as a function of the starting

position of the probe sphere.

On the other hand, this approach brings us back to the

question of whether reliable information on the sphere dynamics
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can be extracted from TIRM data at all. In earlier contributions,

measurements of the near wall diffusion coefficients were mainly

reported as an independent method to determine the particle

separation distance from the wall. This method is based on the

fact that the particle mobility close to a wall becomes anisotropic

and position dependent due to the hydrodynamic interaction with

the wall.25,26 The feasibility of this approach has been debated,27–31

mainly because of the fact that the Brownian motion of the probe

spheres is overlaid with a drift term which is caused by the forces

on the probe particle due its direct interaction with the wall as well

as gravity.

In this paper we are tackling this problem again, and we will

show that measurements of the particle’s local drift velocity are

significantly more reliable than the measurement of the local

diffusion constant. This suggests a new approach to the analysis of

dynamic information, inherent to TIRM data.

2 Theoretical considerations
2.1 Determination of the interaction potential

The measurement of the position dependent interaction

potential between a probe sphere of radius R and a flat glass

surface, F(h), using TIRM, is based on the assumption that the

intensity, IS(h), which is scattered by the sphere residing in an

evanescent illumination field, is an exponentially decaying

function of its surface-to-surface separation distance, h from

the interface. As Prieve has demonstrated in his seminal

contribution17 and as was reported frequently since, the inter-

action potential can be obtained from the histogram of scattered

intensities as

bDFðhÞ � ln
N ISðhÞm
� �

ISðhÞm
N ISðhÞð ÞISðhÞ

� �

; (1)

where IS(h)m is the intensity occurring with the highest frequency

N(IS(h)m).

Especially in the case of large penetration depths, reflections

of the scattered light from the glass wall and the formation of

standing waves will lead to significant deviations from the

simple exponential relation of scattered intensity and separation

distance. In these cases, which we may safely disregard in this

contribution, muchmore demanding approaches are required.32–34

Since all quantities on the rhs of approximation 1 can be

determined experimentally, the profile of potential differences

can be readily determined on a relative scale, where the minimum

is located at DF(h) = 0 and Dh = 0. To obtain potential profiles on

absolute scales of separation distances and interaction energy,

an appropriate calibration scheme has to be applied, which was

discussed in our earlier contribution16 for the systems under

consideration.

2.2 Extracting dynamic information from TIRM-data

In a typical TIRM experiment the probe particle is restricted to

quasi one-dimensional Brownian motion normal to the glass

surface, by the application of a weak laser trap, inhibiting

particle diffusion parallel to the wall almost completely. In this

case the particle’s dynamics can be described by a one dimen-

sional version of the Smoluchowski equation of motion

@P z; z0jtð Þ

@t
¼

@

@z
DnðzÞ

@P z; z0jtð Þ

@z
þ b

dFðzÞ

dz
P z; z0jtð Þ

� �� �

: (2)

Here z is the shortest distance of the particle center of mass to

the wall, i.e. z = h + R with R the particle radius, P(z,z0|t) is the

conditional probability density function (PDF) of finding the

sphere at some elevation z at time t, given that it was located at

elevation z0 at time zero, and Dn(z) is the particle’s diffusion

coefficient normal to the wall, which is position dependent due

to the hydrodynamic interaction with the wall.35,36 For con-

venience of notation we will denote the PDF simply by P in the

following.

Prieve and co-workers27,28 suggested to use the concept of

the scattered intensity time auto-correlation function (ITACF),

g(t), to extract dynamic information from TIRM data. Their general

formulation of the ITACF is

gðtÞ ¼

ð1

R

dz0

ð1

R

dzIðzÞIðz0Þpðz0ÞP (3)

where p(z0) is the Boltzmann probability density corresponding to

the potential at z0. Exploiting the initial condition that the PDF is a

delta-function at time zero, P(z,z0|t = 0) = d(z � z0), the correlation

function at t = 0 is

gð0Þ ¼

ð1

R

dz0I
2ðz0Þpðz0Þ: (4)

Further, in their second paper Bevan and Prieve28 showed that the

initial slope of the ITACF is

dgðtÞ

dt

�

�

�

�

t¼0

¼ �L2

ð1

R

dz0I
2ðz0ÞDnðz0Þpðz0Þ: (5)

Finally, the combination of eqn (4) and (5) allows for relating the

averaged diffusion coefficient normal to the interface to the ratio

of its derivative over the correlation function at time zero

hDni
TIRM ¼

:
Ð1
R
dz0I

2ðz0ÞDnðz0Þpðz0Þ
Ð1
R
dz0I2ðz0Þpðz0Þ

¼ �
L�2

gð0Þ

dgðtÞ

dt

�

�

�

�

t¼0

: (6)

Both the latter quantities can be extracted from experimental

TIRM data. Note that eqn (6) represents an expression for a

diffusion constant which is averaged over the evanescent illumina-

tion profile.

In order to obtain spatially resolved information on the

particle’s dynamics, we will now discuss an approach to extract

spatially resolved dynamic information from TIRM data, which

is based on the measurement of the first two moments of the

displacement distribution, i.e. the time dependence of the

mean displacement (MD) of a particle starting from z0 at t = 0

mðt; z0Þ ¼
:
hz� z0i ¼

ð1

R

dzðz� z0ÞP (7)
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and the mean squared displacement (MSD)

Wðt; z0Þ ¼
:
hðz� z0Þ

2i ¼

ð1

R

dzðz� z0Þ
2P: (8)

Since the only time dependent term in the definitions of the

MD and MSD is P, their time derivatives, according to eqn (2),

can be written as

dmðt; z0Þ

dt
¼

ð1

R

dzðz� z0Þ
@

@z
DnðzÞ

@P

@z
þ b

dFðzÞ

dz
P

� �� �

(9)

while

dWðt; z0Þ

dt
¼

ð1

R

dzðz� z0Þ
2 @

@z
DnðzÞ

@P

@z
þ b

dFðzÞ

dz
P

� �� �

: (10)

The integral in eqn (9) can be simplified by a twofold integra-

tion by parts leading to the following expression for the mean

drift velocity

hvðzÞi ¼
dmðt; z0Þ

dt
¼

ð1

R

dzP
dDnðzÞ

dz
� bDnðzÞ

dFðzÞ

dz

� �

(11)

where the boundary terms vanish because P is zero at infinite

distances, as the particle is subject to significant sedimenta-

tion, and in the limiting case of z- R the particle’s mobility is

zero for hydrodynamic non-slip boundary conditions. From

eqn (11) we can identify the local drift velocity as

vðzÞ ¼
dDnðzÞ

dz
� bDnðzÞ

dFðzÞ

dz
: (12)

The first term, which is often referred to as spurious drift, is

caused by the fact that the Brownian motion of the particle is

position dependent due to hydrodynamic interaction with the

wall. The second term is the drift velocity which is related to

the external force by Stoke’s law, which can be positive or

negative, because the potential is a non-monotonic function

of z (see the sketch of the potential in Fig. 1) with a single

minimum. Therefore, dF/dz can change sign, while the diffusion

coefficient is a monotonically increasing function of z, as can be

seen from the solid line in Fig. 6.

Similarly we can evaluate the integral of eqn (10) to obtain

dWðt; z0Þ

dt
¼ 2

ð1

R

dzP DnðzÞ þ ðz� z0ÞvðzÞð Þ

¼ 2 DnðzÞ þ ðz� z0ÞvðzÞ½ �h i:

(13)

This implies that the slope of an MSD vs. time curve consists of

two contributions, where one of the contributions results from

a finite drift velocity. The MSD is solely related to the local

diffusion coefficient only for very short times, for which zE z0,

or for positions where the drift is vanishing, i.e. where dDn(z)/dz =

bDn(z)dF(z)/dz.

In the following, we will discuss a method to determine

spatially resolved drift velocities and diffusion coefficients

based on their small displacement Taylor expansion. Introducing

these expansions up to order (z � z0)
2 into eqn (9) and (10) and

solving the integrals leads to

dmðt; z0Þ

dt
¼ vðz0Þ þmðt; z0Þ

dvðz0Þ

dz0
þ
1

2
Wðt; z0Þ

d2vðz0Þ

dz02
þ . . .

(14)

and

dWðt; z0Þ

dt
¼ 2Dnðz0Þ þ 2mðt; z0Þ

dDnðz0Þ

dz0
þ vðz0Þ

� �

þ 2Wðt; z0Þ
1

2

d2Dnðz0Þ

dz02
þ
dvðz0Þ

dz0

� �

þ . . . :

(15)

Using the generic short time expansion of the MD and MSD

m(t,z0) = a11t + a12t
2 (16)

W(t,z0) = a21t + a22t
2, (17)

differentiating with respect to time and comparing coefficients

with eqn (14) and (15) results in the short time evolution of the

MD and the MSD

mðt; z0Þ ¼ vðz0Þtþ
1

2
vðz0Þ

dvðz0Þ

dz0
þDnðz0Þ

d2vðz0Þ

dz02

� �

t2 (18)

and

Wðt; z0Þ ¼ 2Dnðz0Þtþ vðz0Þ
dDnðz0Þ

dz0
þ vðz0Þ

� ��

þDnðz0Þ
d2Dnðz0Þ

dz02
þ 2

dvðz0Þ

dz0

� ��

t2:

(19)

Thus, drift velocities and diffusion coefficients normal to the

interface at given separation distances can be determined from

the initial slopes of the MD and MSD versus time curves, if

sufficiently small times are accessible.

Fig. 1 Sketch of the home-built TIRM setup (left), illustration of evanescent

illumination (top right) and typical potential profiles (bottom right), consisting

of a superposition of electrostatic repulsion with a gravitational contribution

(black) and additional depletion interaction (red).
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3 Experimental section
3.1 Instrumentation

Total internal reflection experiments were performed using an

instrument which was home-built from Olympus microscopy

components. The set-up is sketched in Fig. 1. The illumination

source for the scattering experiment is a 15 mW HeNe p-polarized

laser with l0 = 632.8 nm. To allow for total internal reflection, a

BK7-glass prism (Edmund Optics) is attached to a flow-through

cell (Hellma QS137), of 540 mL volume, and optically matched to it

via refractive index matching oil. The flow-through cell is con-

nected to a sample reservoir with a valve via highly chemically

resistive tubing (Saint Gobain Tygon 2075) for easy loading and

exchanging of samples. Scattered light is collected with an infinity

corrected 40� Olympus SLCPlanFI objective, with a focal length

f = 6.5–8.3 mm and numerical aperture NA = 0.55. The objective

additionally serves to couple in a 532 nm tweezers laser (Coherent

Verdi V2 solid state Nd:Yag laser) from the back focal plane, which

is used to inhibit the observed particle’s lateral motion, keeping it

in the field of view. The tweezers’ nominal power setting was

varied from Pn = 30 mW to 100 mW, where the initial beam was

attenuated by approximately a factor of 20. The actual power at the

sample position, Ps, can be roughly estimated from the calibration

relation Ps = �0.19 + 4.8 � 10�2Pn, which was established by

measuring the power at the sample position with a Coherent

(Labmax) power meter.

In order to ensure that only p-polarized scattered light is

collected, polarizers are mounted in front of both the detectors.

A dichroic mirror is used to block the detectors from the green

tweezers light while allowing the scattered red light to pass. The

detectors are illuminated simultaneously by use of a 50/50 beam

splitter. Additionally a 633 nm band-pass filter is placed in front

of the beam splitter to further purify the transmitted signal

from unwanted green light. To image the probe particles, a

high EM-gain CCD camera (Photometrics Cascade 1 K by Roper

Scientific) is used. To record intensity traces we apply a

Hamamatsu H7421-40 photo-multiplier tube (PMT) operated in

single photon-counting mode. The PMT’s TTL output is recorded

by a digital counter card (National Instruments NI-6602) and then

processed by LabView acquisition software which had been written

in-house. In front of the PMT the parallel light rays from the

infinity corrected objective are focused by a tube lens onto a

pin-hole of 1 mm. This spatial filter reduces the probability of

collecting scattered intensity from surface corrugations and

from other particles in the surroundings of the trapped one,

thereby increasing the signal to noise ratio to about 103.

3.2 Samples

TIRM experiments were performed using charge stabilized

polystyrene latex particles purchased from ThermoSCIENTIFIC

as probe spheres. Three kinds of spheres with radii of R = 1,

1.5 and 2 mm and a width of the size distribution smaller than

one percent were employed. These were suspended in solutions

of wild type fd-virus covering a range of mass concentrations of

0r cfd r 1 mg mL�1 corresponding to 0r cfd t 14c* where c*

is the virus overlap concentration which is defined as the

concentration of rods where the volume fraction of fictitious

spheres with a diameter equal to the length of the rods with

the same number concentration as the rods is unity, that is

1 = rpL3/6, with r the number of rods per unit volume.37 This is

the concentration above which the rotational dynamics of the

rods is affected by rod–rod interactions. From the molecular

weight of the fd-virus particles (Mr = 1.64 � 107 g mol�1) it is

thus found that the overlap concentration c* = 0.07 mg mL�1.

To avoid bacterial growth all suspensions were prepared

using a water/ethanol mixture which contained 15% of alcohol

by volume resulting a solvent viscosity of Z = 1.5 mPa s at 20 1C.

To control the electrostatic repulsion between the probe

spheres and the wall, the ionic strength was adjusted by

applying 5 mmol L�1 of TRIS-buffer at pH = 8.2 in the case of

the smallest probe sphere size. In the case of the two larger

spheres, the buffer concentration was reduced to 2 mmol L�1 to

avoid sphere sedimentation by enhancing electrostatic stabili-

zation. The wild type fd-virus was grown in-house following

standard procedures described elsewhere.38 Once harvested

and cleaned, the viruses were transferred into the suitable

TRIS-buffer/ethanol solution by exhaustive dialysis. This stock

solution was diluted with the appropriate buffer to obtain all

suspensions with the designated fd-concentrations used in the

experiments. The fd-content of all solutions was determined by

UV/vis spectroscopy.39

3.3 Data analysis

To quantify the interaction profiles, the histograms of the

scattered intensities were converted to experimental profiles

using eqn (1), which were fitted by the following model-

function, taking into account electrostatic repulsion, a sum of

the tweezers’ photon pressure and the gravitational contribu-

tion, and depletion interaction

FðhÞ

kBT
¼

B expf�kDhg þ
~Fh

kBT
� Adep 1�

h

L

� �3

for h � L

B expf�kDhg þ
~Fh

kBT
for h4L

8

>

>

>

>

<

>

>

>

>

:

(20)

Here B is the amplitude of the electrostatic repulsion, kD
�1 is

the Debye screening length, F̃ is the sum of weight force Fg = mg

and the light force due to the tweezers photon pressure with m

the probe sphere mass and g the acceleration of gravity, and

Adep = cfdNApRL
2/3Mfd is the amplitude of the depletion

potential where cfd is the virus mass content per volume, NA

Avogadro’s number, R the probe sphere radius, L the virus

length and Mfd its molar mass. As sketched in Fig. 1, the

potential profile is a non-monotonic function of separation

distance with a single minimum, the depth of which varies

with cfd. At small separation distances, the electrostatic repul-

sion causes a negative gradient while at larger distances the

attractive forces dominate the potential. The procedure which

was applied to extract potentials on absolute scales of energy

and distance is discussed in detail in our previous paper. We

will not repeat this discussion here, since the focus of this
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contribution is the discussion of dynamic information while

the static results will be stated only briefly.

Intensity traces were always recorded for 1000 seconds with

a sampling time of 2 ms resulting in 5 � 105 data points per

trace. For the extraction of dynamic information, the time

intensity traces have to be converted to the one-dimensional

particle trajectories as a function of time, using the exponential

relation between separation distance and scattered intensity.

From these, the discrete conditional probability distributions,

pi(hi(t), t|h0), can be easily constructed by identifying all occur-

rences of a selected h0-value and counting the frequencies ni(hi(t))

of a given value hi(t) after a given time t. These quantities can as

well be expressed in terms of the particle center of mass position z,

bearing in mind that z = h + R

piðziðtÞ; tjz0Þ ¼
ni ziðtÞð Þ

P

N

i

ni

(21)

from which the mean displacement and the mean squared

displacement are calculated as

mðt; z0Þ ¼
X

N

i¼1

ðziðtÞ � z0ÞpiðziðtÞ; tjz0Þ (22)

and

Wðt; z0Þ ¼
X

N

i¼1

ðziðtÞ � z0Þ
2piðziðtÞ; tjz0Þ (23)

for selected times and starting values. This will essentially allow

the determination of the local drift velocity v(z0) and diffusion

coefficient Dn(z0) directly from the scattered intensity traces apply-

ing linear fits of the initial slope of the MD and MSD vs. time

curves. It is not possible to determine v(z0) and Dn(z0) from

scattered intensity correlation functions since there are no analytical

expressions relating these quantities to the ITACF.

4 Results and discussion
4.1 Static interaction potentials

The static interaction potentials between a wall and probe

spheres of different size dispersed in suspensions with increas-

ing concentrations of the rod-shaped depletant fd-virus were

measured by TIRM. To increase the reliability of the results all

experiments were performed at ten different power settings of

the tweezers laser, for each fd-concentration. Simultaneous

non-linear least squares fitting by eqn (20) to the experimental

data was used to determine the amplitude, Adep, of the deple-

tion interaction as a function of depletant concentration. Since

all parameters entering Adep are exactly known from the litera-

ture, an expected trend for this dependence can be calculated

assuming the Derjaguin-approximation to be valid and neglect-

ing the rod–rod interaction. In Fig. 2 we compare this predic-

tion to the experimental data, where the results were averaged

over all applied nominal laser tweezers powers. In the case of

the two smaller probe spheres, the shown results are additionally

averaged over two independent measurement series. Intriguingly,

the experimental data follow the trend predicted by the Derjaguin

approximation for ideal gas behavior of the rods in regions of virus

concentration and size ratio where these approximations are

expected to be violated. In the case of the two probe spheres with

R = 1.5 mm and R = 2.0 mm, for which Derjaguin-approximation is

valid,9,10,15 the theoretical model matches the experimental data

up to rod concentrations of about 0.6 mg mL�1, which corre-

sponds to roughly eight times the rod overlap concentration.

This confirms qualitatively earlier findings by Lin et al.11 and

Lau et al.,12 who investigated the particle particle pair potential by

laser tweezers techniques. For the smallest probe sphere there is

agreement within experimental scatter of the measured data with

the approximate predictions throughout the whole range of rod

concentrations which were investigated. Actually this is expected

from the expansion by Mao et al.8 according to which the

normalized amplitudes of the depletion potential are given by

Adep

R
¼

cfd

c�
12

pL

p

6
þ K2

0cfd

c�
6d

pL
þ K3

0 cfd

c�
6d

pL

� �2
" #

(24)

where d E 7 nm is the rods’ hard core cross section diameter

and K 0
2 E �0.05 E �K 0

3. Accordingly, the deviation between

the ideal gas approximation and the expansion is of the order of

a few percent, as shown by the dashed magenta line in Fig. 2.

Adding twice the Debye screening length to the diameter, will

change the result only within the thickness of the said line. At

even higher concentrations we find a systematic deviation of

the experimental data towards higher values of Adep/R than

predicted for the sphere with R = 1.5 mm and for the largest

probe sphere we observe a substantial mismatch in the same

direction. A potential explanation for such deviations was given

by Lin et al.,11 who observed that in some cases two particles

could be bridged by adsorbing rods, which resulted in a

harmonic potential with very large attractive forces at large

Fig. 2 Normalized amplitude of the depletion interaction as a function of

depletant concentration. Full symbols are experimental data obtained with

probe spheres of different size, as indicated in the legend and averaged

over all laser tweezers powers. The full lines are guides to the eye and the

error bars represent standard deviations of the experimental distribution

with respect to laser powers. The black dashed-dotted line represents the

expected trend according to eqn (20), assuming that the Derjaguin- and

the ideal gas approximation are valid while the dashed magenta line

represents the prediction by Mao et al.8
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separation distances. However, this should, as they argue, also

lead to a repulsive contribution at short separations, which we

do not observe. The deviation of the experimental results and

the virial approximation is most probably due to the slow

oscillatory-like convergence of the virial expansion: each higher

order term in the expansion seems to partly compensate the

preceding lower order term, so that many terms in the virial

expansion need to be accounted for before an accurate approxi-

mation is achieved. For flexible polymers there is a fundamental

difference between the mechanism leading to depletion forces

below and far above the overlap concentration, due to the inter-

penetration of polymers chains leading to a loss of the integrity of

single polymers (see ref. 4, and references therein). The only

existing theory for depletion interactions for higher rod-depletant

concentrations is the discussed virial expansion up to third order

in concentration. For even higher concentrations, an in-depth

discussion of depletion interactions that goes beyond this third

order virial approach is as yet to be developed. To get some further

insight into the physics of the investigated system we will now

discuss experiments on the probe sphere dynamics, which can be

extracted from TIRM data.

4.2 Spatially averaged diffusion coefficients

As a first step we follow the approach of Bevan and Prieve to

determine the averaged diffusion coefficient, hDni
TIRM, from the

initial slope of the normalized ITACF. The time dependencies

of correlation functions (as well as MDs and MSDs as will be

discussed below) for short times are fitted with a linear func-

tion in time. Adding a quadratic contribution does not improve

the quality of the fits for short times, and do not affect the

values obtained for the initial slope. A representative set of

correlation functions obtained with a probe sphere of R = 1.5 mmat

a nominal tweezers laser power of 0.03 W and with increasing

fd-concentrations is shown in Fig. 3.

The averaged diffusion coefficients are determined by multi-

plying the resulting slopes of the linear fits to the first five data

points, with the squared penetration depth of the evanescent wave.

Theoretical values for the averaged diffusion constant, hDni
theo,

can be calculated by introducing Brenner’s expression25,26 for the

near wall diffusion Dn(z) = D0 f (z) into eqn (6), where D0 is the

particle’s Stokes–Einstein bulk diffusion coefficient and

f �1ðzÞ ¼
4 sinh a

3

X

1

n¼1

nðnþ 1Þ

ð2n� 1Þð2nþ 3Þ

�
2 sinh½ð2nþ 1Þa� þ ð2nþ 1Þ sinh½2a�

ð2 sinh½ðnþ 1=2Þa�Þ2 � ðð2nþ 1Þ sinh aÞ2
� 1

� �

(25)

is a position dependent near wall friction coefficient with

a = cosh�1(z/R). In Fig. 4 we show the ratios hDni
theo/hDni

TIRM,

which have been calculated for each applied tweezers’ power

and averaged subsequently. We choose this representation to

highlight the qualitative similarity to the static data shown in

Fig. 2. Note that for the calculation of the theoretical diffusion

coefficients, the viscosity of the solvent has been used instead

of the total solution viscosity. This will be rationalized in

Section 4.3, both on the basis of measurements of the spatially

resolved velocities as well as the mesh size of the fd-virus

network relative to the bead displacement during the short

Fig. 3 Top: Example of normalized time auto-correlation functions of

scattered intensities calculated from intensity traces measured with a

probe sphere of R = 1.5 mm at a nominal tweezers laser power of

0.03 W and at increasing fd-concentrations as indicated in the legend.

Bottom: Zoom into the short time regime. The red lines represent the

linear fits at t- 0 which were used to determine hDni
TIRM.

Fig. 4 Ratios of the numerical predictions over experimental data of the

averaged diffusion coefficient normal to the wall. Symbols are ratios

obtained with probe spheres of different size, as indicated in the legend

and averaged over all laser tweezers powers. The full lines are guides to the

eye and the error bars represent standard deviations of the distribution

with respect to laser powers.

Paper Soft Matter

O
p

en
 A

cc
es

s 
A

rt
ic

le
. 

P
u

b
li

sh
ed

 o
n

 1
2

 N
o

v
em

b
er

 2
0

1
8

. 
D

o
w

n
lo

ad
ed

 o
n

 1
1

/1
4

/2
0

1
8

 1
2

:2
8

:2
4

 P
M

. 

 T
h

is
 a

rt
ic

le
 i

s 
li

ce
n

se
d

 u
n

d
er

 a
 C

re
at

iv
e 

C
o

m
m

o
n

s 
A

tt
ri

b
u

ti
o

n
 3

.0
 U

n
p

o
rt

ed
 L

ic
en

ce
.

View Article Online



This journal is©The Royal Society of Chemistry 2018 Soft Matter

time interval from which the diffusion coefficients are

obtained.

As for the static results, all experimental data agree quite

well with the theoretical expectation up to an fd-concentration

of about 0.4 mg mL�1, which for the smallest probe sphere

applies throughout the entire concentration regime. For the

case of the sphere with R = 1.5 mm the experimental data

show a small but significant deviation from the prediction at

cfd \ 0.5 mg mL�1, while in this concentration range the

experimental data obtained with the largest probe sphere are up

to a factor of four higher than expected. This mismatch is most

probably due to the quite large inaccuracy in determining the

diffusion coefficients, due to the very short time range over which

the correlation function varies linearly in time (this will be

discussed in quantitative detail in Section 4.3), although there

seems to be a correlation with the observation from static data

where, in the same range of probe sphere size and virus concen-

trations, the apparent amplitude of the depletion potential is

much deeper than expected from the theoretical prediction. As

the physics behind a potential correlation between static and

spatially averaged dynamic properties are unknown to us, we

refrain from a further discussion, and in the following we extracted

spatially resolved dynamic information directly from scattered

intensity traces. For this purpose, we analyzed the distributions

of particle displacements depending on the starting separation

distance, as will be discussed in the next section.

4.3 Spatially resolved dynamic information

Particle mean displacements and mean squared displacements

were calculated as a function of time and starting position

according to eqn (22) and (23). Some representative examples

for the time dependence of MDs and MSDs are shown in Fig. 5.

At low starting values (z0 = R + 10 nm, black curve in the top

panel), the MDs are always positive and increase continuously

with time, due to the repulsive interaction of the particle with

the wall. Differently, at z0 = R + 100 nm (purple curve in the top

panel) where the effective gravitational contribution dominates

the static potential, the mean displacements are always nega-

tive and decrease monotonically with time. In both cases the

MD curves level off only at times beyond about two seconds. In

cases where z0E R + hm (light blue curve in the top panel), the

absolute values of the mean displacements are very small,

because the particle is almost force free at the starting position.

All MSD curves show an almost linear time dependence at

small times and level off to a plateau value at large times (see

Fig. 5, lower panel). The height of these plateaus represent the

square of the maximum distances the particles may explore

starting from a given z0 until the potential difference makes the

probability of the displacement vanish. According to eqn (18)

and (19), the initial slope of a MD vs. time curve is the particles

drift velocity at the chosen position, v(z0) = v(h0 + R), while the

short time slope of a MSD vs. time curve is twice the position

dependent diffusion coefficient Dn(z0). In the following these

quantities will be treated in detail.

In Fig. 6 diffusion coefficients of particles in depletant free

suspensions are displayed in terms of the ratio Dn(z)/D0 versus

the normalized separation distance h/R = z/R � 1. For con-

venience of notation, the subscript 0 is dropped from the position

coordinate here and further on. The error bars assigned to the

experimental data represent the confidence interval of the linear

least squares fit to the initial part of the MSD vs. time curves. We

used the solvent viscosity of Z = 1.5 mPa s for the used water/

ethanol mixture to calculate D0 from the particle radius using the

Fig. 5 Mean displacements (top) and mean squared displacements

(bottom) as a function of time of a particle with R = 2 mm in a depletant

free suspension. Curves were calculated for starting separation distances

ranging from 10 to 100 nm in steps of 10 nm.

Fig. 6 Normalized particle diffusion coefficients as a function of normalized

separation distance. Symbols are experimental data obtained at a nominal

tweezers’ power of 30 mW and with different probe particle sizes as indicated

in the legend. Particles were suspended in depletant free solution. The full line

is the theoretical prediction by Brenner and co-workers.
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Stokes–Einstein relation and from that Dn(z)/D0 as a function of z

by applying eqn (25). The resulting data are represented by the full

black curve in Fig. 6. It is obvious that the experimental data

deviate considerably from Brenner’s prediction, which does not

improve when depletant rods are added to the system. Therefore

we refrain from the discussion of the diffusion coefficients

measured at finite fd-concentration, also because the zero-shear

viscosity of fd-suspensions cannot be measured reliably.40 The

discrepancy between the experimental data for the diffusion

coefficient and Brenner’s theory in Fig. 6 reveals the substantial

inaccuracy with which diffusion coefficients can be determined

from TIRM experiments. As will be seen later, spatially resolved

velocities can be obtained much more accurately.

The drift velocities, obtained from the same sets of raw data,

are plotted as a function of position in Fig. 7 and compared to the

predictions based on Brenner’s near wall friction coefficient

through eqn (12). Again, the symbols are experimental data for

all probe sphere sizes, which were determined by linear least

squares fitting of the initial part of the MD versus time curves,

while the lines represent the predictions for the corresponding

probe particle size. The input parameters for these calculations are

solvent viscosity, which was again set to Z = 1.5 mPa s in all cases,

and the potential derivative, which was determined from the static

measurements, thus there are no adjustable parameters. The

contribution from the first term in eqn (12) to the drift velocity

is always positive and becomes zero at large distance. The second

term gives a positive contribution for short distances, becomes

zero at the position of the potential minimum, and attains a non-

zero constant value at large distances due to the gravitational force

on the beads (although such large distances are difficult to probe

with TIRM for the large range of the depletion potential in the

present system). Outside the potential minimum, both contribu-

tions can be equally important. Differently from the diffusion

coefficients obtained from the same systems, shown before in

Fig. 6, here we observe very good agreement between experimental

data and predictions for the drift velocities.

The observed quantitative agreement between experimental

and predicted drift velocities suggests a way of measuring local

viscosities in the sample solution. For this purpose we deter-

mined the drift velocities for all probe sphere sizes and all

fd-concentrations and fitted the position dependence of the

experimental data using a combination of eqn (12) and (25) as

the model function with the viscosity as the only free para-

meter. For the data obtained from the largest spheres we could

not get meaningful fits at the two highest fd-concentrations,

because the number of data points was too small due to the very

limited mobility of the probe sphere. For the other systems, the

experimental data and the best fitting curves are shown in Fig. 8

and the best fitting viscosity values are shown in Fig. 9. Apart from

two outliers related to the smallest probe sphere, the viscosities

obtained for all probe spheres are close to the solvent viscosity of

1.5 mPa s with some experimental scatter. Actually the average of

all fitted viscosity values is 1.41 mPa s. This finding may seem

counterintuitive at first glance, since a significant increase of the

viscosity with fd concentration should be expected. However,

looking at the absolute velocity values shows that they have a

maximum of about 0.5 nm ms�1. On the other hand, the times

over which the MD vs. time curves are evaluated are 100 ms at

most. Consequently we are observing drifts which are generally

smaller than Dz o 50 nm. Since the mesh size of a rod network

varies like c�0.5,37 and the mesh size x is of the order L at the

overlap concentration c*, it follows that x ¼ L
ffiffiffiffiffiffiffiffiffi

c�=c
p

. The mesh

sizes in our fd-virus suspensions thus span the range from 200 to

880 nm, which is significantly larger than the typical drift dis-

tances. Therefore it appears reasonable that the sphere mainly

probes the solvent viscosity on these time and length scales.

It is intriguing that the experimental data are much better

described by the theoretical prediction in the case of the drift

velocities than in the case of the diffusion coefficients. In the

following we will give a qualitative argument which might

explain this observation. For the determination of v(z) and

Dn(z) we rely on an initial linear dependence of the particles’

mean displacement and mean squared displacement on time.

Therefore, the ratio of the second coefficient in the short time

expansions of these quantities over the first coefficient, according

to eqn (18) and (19), is a key parameter determining the reliability

of the obtained results. For further discussion we term these ratios

Adrift ¼
vðzÞ

dvðzÞ

dz
þDnðzÞ

d2vðzÞ

dz2

2vðzÞ
(26)

and

Adiff ¼

vðzÞ
dDðzÞ

dz
þ vðzÞ

� �

þDnðzÞ
d2DðzÞ

dz2
þ 2

dvðzÞ

dz

� �

2DnðzÞ
(27)

It is important to note that the drift velocity will be very small or

even zero close to the equilibrium separation distance, i.e. z = hm + R

and consequently, the ratio Adrift will diverge for these separation

distances. Therefore we will discuss the ratios Adrift and Adiff only

for separation distances z/R 4 1.1. A collection of representative

ratios is displayed in Fig. 10. They were calculated for a sphere

Fig. 7 Particle drift velocities as a function of normalized separation

distance. Symbols are experimental data obtained at a nominal tweezers

power of 30 mW and with different probe particle sizes as indicated in the

legend. Particles were suspended in depletant free solution. The full lines

are theoretical predictions calculated without adjustable parameters applying

Brenner’s expression for the near wall friction coefficient.
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with radius R = 2 mm, interacting with the wall by a potential as

typically observed in the static experiments, i.e. an electrostatic

repulsion with amplitude B = 20kBT and a Debye screening

length of k�1 = 10 nm, a sum of light and weight force,

F̃G = 75 fN and a depletion potential of which the amplitude is

determined by the fd-concentration as indicated in the figure

legends. It is immediately evident that in all relevant cases the

ratio |Adrift| o 1, while Adiff is more than an order of magnitude

larger for comparable parameters. Note that both parameters

Adrift and Adiff have the dimension of reciprocal time, which

should be identified with the time range over which the linear fit

is applied which is of the order of several milliseconds to several

tens of milliseconds. This implies that for a given sphere size,

the time range in which reliable diffusion coefficients can be

determined is at least an order of magnitude smaller than the

range in which drift velocities can be measured reliably.

However no matter which time range is chosen, we will always

observe that Adrift { Adiff showing that the linear fit will always

Fig. 8 Local drift velocities as a function of separation distance. Symbols

are experimental data obtained at a nominal tweezers power of 0.03 W for

spheres with R = 1 mm (top), R = 1.5 mm (middle) and R = 2 mm (bottom) in

suspensions of various fd-concentrations as indicated in the legends. The

full lines represent simultaneous non linear least squares fits using a

combination of eqn (12) and (25) as the model function. Note that there

are no fitting curves for the two highest fd-concentrations in the bottom

panel.

Fig. 9 Best fitting viscosity values as a function of depletant concen-

tration. Symbols are data for different particle sizes as indicated in the

legend, obtained at 0.03 W tweezers laser power. The data were deter-

mined by non-linear least squares fitting of the drift velocity vs. separation

distance curves displayed in Fig. 8.

Fig. 10 Ratios between the second and first coefficient of the short time

expansions of the time dependence of the mean displacement (top) and

the mean squared displacement (bottom). Curves are calculated for a

R = 2 mm sphere suspended in solutions with varying fd-concentrations as

indicated in the legend.
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be less reliable in the case of the MSD data as compared to

the MD data.

5 Conclusions

In our earlier contribution16 we showed that depletion potentials

induced by the rod-like fd-virus particles (long and stiff rod-like

colloids) follow the classical Asakura–Oosawa theory up to 5 times

the overlap concentration c*, at which the theory is expected to fail.

Above a concentration of about 6c*, however, we observe devia-

tions from the ideal gas behavior (see Fig. 2), which are much

larger than predicted by a third order virial expansion in

concentration.5,8 The dynamics of spheres in depletion potentials

at such high fd-concentrations can be probed by Total Internal

Reflection Microscopy (TIRM). Earlier, pioneering work in ref. 27

and 28 in which spatially averaged dynamics was probed, is

extended to probe spatially resolved quantities. Mean squared

displacements (MSDs) and mean displacements (MDs) are

obtained from the one dimensional particle trajectories as a

function of time for a range of initial positions of the probe

sphere. It is shown that the time range over which the MSD varies

strictly linearly with time is quite limited, leading to quite inaccu-

rate values for the position dependent diffusion coefficients (see

Fig. 6). The same holds for the spatially averaged diffusion

coefficients determined from the initial slope of the correlation

function as proposed by Prieve. Much more reliable data are

obtained from the MDs, (see Fig. 7 and 8) because the term,

second order in time, is much less significant at short times. From

the spatially resolved MDs we deduce the local viscosity. Since the

displacement of the probe spheres during the time range in which

theMD varies linearly with time is much less than themesh size of

the fd-virus network, the viscosity of the pure solvent is probed.

This would be different for other types of systems where the spatial

extent of microstructural order in the depletant solution is larger

than the size of the probe sphere, in which case the spatially

varying bulk viscosity will be probed. Future numerical work is

needed to calculate MDs over large time intervals, beyond the

linear time regime, in order to probe the local bulk viscosity from

the long-time behavior of theMDs for systems where themesh size

is larger than the typical sphere displacement within the linear

time regime.
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